

Integral Cup 2025 - Phase 1 Preliminary Exam

Question Paper & Answer Key

Q1.
$$a = \int_0^1 \frac{\arctan x}{x} dx$$

Find
$$\sum_{r=0}^{\infty} \frac{1}{(4r+1)^2}$$
 in terms of a ,

given that
$$\sum_{r=1}^{\infty} \frac{1}{r^2} = \frac{\pi^2}{6}$$

a.
$$0.616 + \frac{a}{2}$$

b.
$$0.739 + \frac{a}{2}$$

c.
$$0.232 + \frac{a}{2}$$

d.
$$0.114 + \frac{a}{2}$$

Q2. Evaluate the integral:
$$\int_{-\infty}^{0} \frac{\sin^3 x}{x} dx$$

Given
$$\pi = 3.14159265$$

Q3. Evaluate the integral: $\int_{-\infty}^{\infty} e^{-(ax^2+bx+c)} dx$

a.
$$\frac{\sqrt{\pi} \cdot e^{-\left(\frac{4ac - b^2}{4a}\right)}}{\sqrt{a}}$$

b.
$$\frac{\sqrt{\pi} \cdot e^{-\left(\frac{b^2 - 4ac}{4a}\right)}}{\sqrt{a}}$$

$$\text{C.} \quad \frac{\sqrt{\pi} \cdot e^{-\left(\frac{4ac - b^2}{2a}\right)}}{\sqrt{a}}$$

d.
$$\frac{\sqrt{\pi} \cdot e^{-\left(\frac{4ac + b^2}{4a}\right)}}{\sqrt{a}}$$

Q4 . Evaluate the integral $\int_{-\infty}^{0} \ln(1-e^{nx}) \ dx$

given
$$\sum_{r=1}^{\infty} \frac{1}{r^2} = \frac{\pi^2}{6}$$

a.
$$\frac{\pi^2}{6n}$$

b.
$$-\frac{\pi^2}{6n}$$

c.
$$-\frac{ln^2(n)}{2}$$

d.
$$\frac{1}{n^2}$$

Q5. Evaluate the integral, given that the infinite sum of the sixth powers of the reciprocals

of natural numbers is a.

$$\int_0^\infty \frac{x^5}{e^x - 1} \, dx$$

- a. 120a
- b. 48a
- c. 240a
- d. 216a

Q6. Evaluate the integral

$$\int_{1}^{\sqrt{\pi}} e^{x \sin(x^2)} \left(\sin(x^2) + 2x^2 \cos(x^2) \right) dx$$

a.
$$e^{\sin(\sqrt{\pi})} - e^{\sin(1)}$$

b.
$$e^{\sqrt{\pi}}-e^1$$

c.
$$1 - e^{\sin(1)}$$

d.
$$e^{\pi}-e$$

Q7. Find y(1)

$$\int y \, dx = xy - \int \frac{y^2}{1 - y \ln(x)} \, dx$$
Find y(1)

- a. 1
- b. 2
- c. -1
- d. 0

Q8. Assume left integral is A and right one is B then,

Let (f(x)) be a continuously differentiable function that is always positive.

Define
$$H(x) = \sum_{i=0}^{\lfloor x \rfloor} f'(c_i)$$

where (c_i) are the constants obtained from the Lagrange Mean Value Theorem (LMVT)

in the intervals ([0, 1], [1,2], ..., [
$$[x]$$
, x]).

Compare the integrals:

$$\int_0^1 H(x)dx \quad \text{and} \quad \int_0^1 f([x])dx.$$

- a. A = B
- b. A > B
- c. A < B
- d. A <= B

Q9. Compare the following two integrals

$$A = \int_{-\infty}^{\infty} e^{x(i-x)} dx \qquad B = \int_{-\infty}^{\infty} e^{-x^2} \cos x dx$$

- a. A <= B
- b. A > B
- c. A is divergent
- d. A is complex and B is real

Q10. Given the curve: $y = e^{-x^2}$

Let the point (A) be given as: $A(\sqrt{\ln 2}, 0.5)$

Consider a point (B) on the curve such that (y > 0.5). From (A), draw a

line parallel to the y-axis, and from (B), draw a line parallel to the x-axis until they

meet at point (C).

The area of triangle \triangle ABC is a function of x, denoted as \triangle (x).

If we extend the domain of $\triangle(x)$ from $\left[-\frac{1}{2},1\right]$ to $(-\infty,\infty)$, evaluate the integral:

$$\int_{-\infty}^{\infty} \left(\Delta(x) + \frac{\sqrt{\ln 2}}{4} \right) dx$$

(Instruction: Do not use modulus for distances.)

Ans =

Q11. The condition part is subjective. It is only for tiebreakers.

Now, cut the ellipsoid with a plane perpendicular to the x-axis at some fixed x obtaining an ellipse E in the . Next, take this ellipse E and translate it parallel to the xz-plane from the positive z-axis to the negative z-axis in such a way that a second, identical ellipse is completely enclosed within it. Find the area of the resulting shaded region formed due to this transformation. Consider a surface given by:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, where $b > c > a$

Two planar sections are made:

- 1. The first section is taken at x = k, yielding a planar curve in the yz plane.
- 2. The second section is taken at y = h, yielding a planar curve in the xz plane.

Let the areas of the two cross-sections be A_1 and A_2 , respectively. Compute the absolute difference $|A_1-A_2|$ in terms of a,b,c,k,h, and determine under what conditions one section encloses a strictly larger area than the other.

a.
$$\pi c \cdot \left| b \sqrt{1 - \frac{k^2}{a^2}} - a \sqrt{1 - \frac{h^2}{b^2}} \right|$$

b.
$$\pi c \cdot \left| b \sqrt{1 - \frac{h^2}{b^2}} - a \sqrt{1 - \frac{k^2}{a^2}} \right|$$

c.
$$\pi b \cdot \left| c \sqrt{1 - \frac{k^2}{a^2}} - a \sqrt{1 - \frac{h^2}{b^2}} \right|$$

Q12. Consider a n – dimensional Guassian manifold given by:

$$M_n$$
: $z = e^{-(x_1^2 + x_2^2 + \dots + x_n^2)}$

Find the volume enclosed between M_n and the plane z=0 over the

domain
$$x_1, x_2, \dots, x_n \in \mathbb{R}^n$$
.

For the beginners, manifold simply means surface;)

- a. $\frac{\pi^{(n-1)/2}}{2}$
- b. $\frac{\pi^n}{2}$
- c. $\frac{1}{2^n}\pi^{n/2}$
- d. $\frac{\pi^{n/2}}{2}$

Q13. Evalute the Integral

$$I = \int_{-1}^{1} e^{-x^2} dx$$

by expressing it as the limit of a sum:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{r=-n}^n e^{-\left(\frac{r}{n}\right)^2}$$

Jensen's Inequality Statement:

For a convex function f and set a weights (λ_i) summing to 1,

$$f\left(\sum \lambda_i x_i\right) \leq \sum \lambda_i f(x_i).$$

Using Jensen's inequality with $f(x) = \ln x$, determine the best possible lower bound for I. Provide a numerical answer for this bound.

Ans = _____

Q14. In a thermodynamic system, heat Q is a function of entropy S and temperature T, given by Q(S,T). It is known that entropy and temperature are independent, i.e.,

$$\frac{dS}{dT} = 0.$$

Additionally, the system satisfies the differential relations:

$$\frac{dQ}{dT} = T^5$$
, and $dS = \frac{dQ}{T}$.

We also define another given condition:

$$\frac{dQ}{dS} = Te^{T}.$$

Initially, at temperature $T=1\,K$, the heat is Q=0. Find the total heat Q at infinite temperature $T\to$ ∞ .

Additional Information for Calculation:

It is given that the infinite series

$$\sum_{r=1}^{\infty} \frac{1}{r^6} = \frac{\pi^6}{945} \approx 1.017343.$$

Use this information to compute Q.

Guidelines for this questions as this question represents hypothetical thermodynamic situation and may yield strange expressions.

- Start writing with q = q(S, T)
- Consider small change q as dq
- Then use other given diffretial relations (Don't use diffretial relations before)
- Answer till 2 places

Ans = _____

Page 8 of 10

Q15. Solve the Integral

$$\int_0^\infty \left(\frac{1}{\int_0^\infty e^{-2025}\ x^{|y|}\,dx}\right)dy$$

Where [y] denotes the **floor function**, i.e., the greatest integer less than or equal to y.

Note $\exp(x) = e^x$.

- a. 5050.exp(5050)
- b. 2025exp(2025)
- c. 2025exp(2025)+2025
- d. exp(2025)

Answers

1.
$$0.616 + \frac{a}{2}$$

3.
$$\frac{\sqrt{\pi} \cdot e^{-\left(\frac{4ac-b^2}{4a}\right)}}{\sqrt{a}}$$

$$4. \quad -\frac{\pi^2}{6n}$$

6.
$$1 - e^{\sin(1)}$$

8.
$$A \le B \text{ or } A \le B$$

11.
$$\pi c \cdot \left| b \sqrt{1 - \frac{k^2}{a^2}} - a \sqrt{1 - \frac{h^2}{b^2}} \right|$$

12.
$$\frac{\pi^{n/2}}{2}$$